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In the analog VLSI implementation of neural systems, it is sometimes convenient to build
lateral inhibition networks by using a locally connected on-chip resistive grid. A serious
problem of unwanted spontaneous oscillation often arises with these circuits and
renders them unusable in practice. This paper reports a design approach that
guarantees such a system will be stable, even though the values of designed elements in
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analysis of the interconnected system is required, empirical in the sense that they
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network cannot affect the analysis.\é
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CIRCUIT DESIGN CRITERIA FOR STABLE LATERAL INHIBITION NEURAL NETWORKS

J.L. WYATT, Jr. and D.L. STANDLEY

Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

ABSTRACT

In the analog VLSI implementation of neural
systems, it is sometimes convenient to build
lateral inhibition networks by using a locally
connected on-chip resistive grid. A serious prob-
lem of unwanted spontaneous oscillation often arises
with these circuits and renders them unusable in
practice. This paper reports a design approach that
guarantees such a system will be stable, even though
the values of designed elements in the resistive
grid may be imprecise and the location and values of
parasitic elements may be unknown. The method is
based on a rigorous, somewhat novel mathematical
analysis using Tellegen's theorem and the idea of
Popov multipliers from control theory. It is
thoroughly practical because the criteria are local
in the sense that no overall analysis of the inter~
connected system is required, empirical in the
sense that they involve only measurable frequency
response data on the individual cells, and robust
in the sense that unmodelled parasitic resistances
and capacitances in the interconnect network cannot
affect the analysis.

I. INTRODUCTION

The term "lateral inhibition" first arose in
neurophysiology to describe a common form of neural
circuitry in which the output of each neuror in
some population is used to inhibit the response of
each of its neighbors. Perhaps the best understood
example is the horizontal cell layer in the verte-
brate retina, in which lateral inhibitiorn simul~-

t sly enh s intensity edges and acts as an
automatic gain control to extend the dynamic range
of the retina as & whole {1]. The principle has
been used in the design of artificial neural system
algorithms by Kohonen (2] and others and in the
electronic design of neural chips by Carver Mead et.
al. [3,4). .

In the VLSI implementation of neural systems,
it is convenient to build lateral inhibition net-
works by using a locally connected on-chip resistive
grid. Linear resistors fabricated in, e.g9., poly-
silicon, yield a very compact realization, and non-
linear resistive grids, made from MOS transistors,
have been found useful for image segmentation. (4,
$]. MNetworks of this type can be divided into two
classes: feedback systems and feedforward-only
systems. In the feedforward case one set of
amplifiers imposes signal voltages or currents on
the ¢grid and another set reads out the resulting
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response for subsequent processing, while the same
amplifiers both "write” to the grid and “read™ from
it in a feedback arrangement. Feedforward networks
of this type are inherently stable, but feedback
networks need not be.

A practical example is one of Carver Mead's
retina chips (3] that achieves edge enhancement by
means of lateral inhibition through a resistive
grid. Figure 1 shows a single cell in a continuous-
time version of this chip. Note that the capacitor
voltage is affected both by the local light intensity
incident on that cell and by the capacitor voltages
on neighboring cells of identical design. Any cell
drives its neighbors, which drive both their dis-
tant neighbors and the original cell in turn. Thus
the necessary ingredients for instability--active
elements and signal feedback--are both present in
this system, and in fact the continucus-time version
ogcillates so badly that the original design is
scarcely usable in practice with the lateral inhi-
bition paths enabled. [6] Such oscillations can

Figure 1. This photoreceptor and signal processor
circuit, using two MOS transconductance amplifiers,
realizes lateral inhibition by communicating with
similar units through a resistive grid.

readily occur in any resistive grid circuit with
active elexants and feedback, even when each
individual cell is quite stable. Analysis of the
conditions of instability by straightforward methods
appears hopeless, since the number of simultaneously
active feeddback loops is enormous.

This paper reports a practical design approach
that rigorously guarantees such a system will be
stable. The very sisplest version of the idea is
intuitively obviocus: design each individual cell so
that, although internally active, it acts like a
passive system as seen from the resistive grid. 1In




circuit theory language, the design goal here is
that each cell's output impedance should be a
positive~real (7] function. This is sometimes not
too difficult in practice; we will show that the
original network in Fig. 1 satisfies this condition
in the ahsence of certain parasitic elements. More
important, perhaps, it is a condition one can verify
experimentally by frequency-response measurements.
It is physically apparent that a collection
of cells that appear passive at their terminals will
form a stable system whan interconnected through
a passive medium such as a resistive grid. The
research contributions, reported here in summary
form, are i) a demonstration that this passivity or
positive~real condition is much stronger than we
actually need and that weaker conditions, more easily
achieved in practice, suffice to guarantee stability
of the linear network model, and ii) an extension to
the nonlinear domain that furthermore rules out
large-scale oscillations under certain conditions.

II. FIRST-ORDER LINEAR ANALYSIS OF A
SINGLE CELL

We begin with a linear analysis of an elemen-
tary model for the circuit in Fig. 1. For an initial
approximation to the output admittance cf the cell
we simplify the topology (without loss of relevant
information) and use a naive' model for the trans-

conductance amplifiers, as shown in Fig. C.

. f
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Figure 2. Simplified network topology and trans-
conductance amplifier model for the circuit in Fig.
1. The capacitor in Fig. 1 has been absorbed into

Coye

Straightforward calculations show that the
output admittance is

9m; 9m; R0y

(145 RoyCoy) ° m

Y(s) = lq,,z#lio;ln Copl +

This is a positive-real, i.e., passive, admittance
that could always be realized by a network of the
form shown in Fig. 3, where

-1 -1 -1
Rl-(q-z"nox) ' .2-‘9n19m2R°1) s and L = C°1/qm1q-2.

Although the original circuit contains no
inductors, the realization has both capacitors and
inductors and thus is capable of damped oscillations.
Nonetbeless, if the transamp model in Fig. 2 were
perfectly accurate, no network created by inter-
connecting such cells through a resistive grid (with
parasitic capscitances) could exhibit sustained
oscillations since all the elamsnts are passive.
For element values that may be typical in practice,
the model in Pig. 3 has a lightly damped resonance
around 1 Kz with a Q = 10. This disturbingly high
Q suggests that the csll will be highly sensitive

to parasitic elemsnts not captured by the simple
models in Fig. 2. Our preliminary anslysis of a
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PFigure 3. Passive network realiszation of the out-

put admittance (eq. (1)) of the circuit in Fig. 2).

much more complex model extracted from a physical
circuit layout created in Carver Mead's laboratory
indicated that the ocutput impedance will not be
passive for all values of the transamp bias currents.
But a definite explanation of the instability awaits
a more careful circuit modelling effort and perhaps
the design of an on-chip impedance measuring
instrument.

IIX. STABILITY OF A LINEAR MODEL FOR THE NETWORK
Transistor parasitics and layout parasitics
will cause the output admittance of the individual
active cells to deviate from the form given in eq.
(1) and Pig. 3, and any very accurate model will
necessarily be quite high order. The following
theorem shows what sort of deviations we can allow
and still guarantee that the network is stable.

Temminology

The term closed right half plane refers to the
set of complex numbers s = 0 + ju with 0>0 and the
term closed third gquadrant rsfers to the set of
complex numbers with 0<0 and w<0. A natural
frequency is a complex frequency s, such that,
vhen all branch impedances and admittances are
evaluated at s,. there exists a nonzero solution
for)thc complex branch voltages {Vy]} and currents

).

Theorem 1

- Consider a linsar network of arbitrary topology,
consisting of any number of positive 2-terminal
resistors and capacitors and of N lumped linear
admittances Y,(s), n=},2,...,N, having no poles
of zeroes in the closed right half plane. Then
the network is stable, in the sense that it has no
natural fraQuency in the closed right half plane
except parhaps at the origin, if at each frequency
w30 there exists a phase angle ¢ (uw) such that
0<0(w) <90° and [/ Y, (Jw) - 8(ju)|< 90°, nel,2,... N,

An equivalent statemsnt of this last condition
is that the Nyquist plot of each cell's cutput ad-
mittance for w>0 never intersects the clesed ird
quadrant, and that no two cell's ocutput admittance
phase angles can ever differ by as much as 180°.

If all the active cells are designed identically
and fabricated on the same chip, their phase angles




should track closely in practice and thus this
second condition is a natural one.

Note that the above statement of the theorem
does not rule out the possibility of an unusual
instability arising from a repeated natural fre-
quency at the origin. But a more careful argumert,
omitted here, shows that the only possible nonzero
network solution at s=0 is the stable cne in which
capacitors in capacitor-only loops have nonzero d.c.
voltages and all other branch voltages and currents
vanish.

Proof of Theorem 1

Let s, denote a natural frequency of the
network and {V,} denote the camplex branch currents
at a corresponding solution. By Tellegen's theorem
[8) ., or conservation of complex power, we have

; 2 1o, 12 [
Livlm e Tacivg?e T tpisgivy'? = o.
resistances capacitances cell
output branches (2)

Solutions of the form 8_ = ju ¥ O can be ruled out
as follows. Note that gox each «>0 all the cell
admittance values Y, (j.) lie strictly above and to
the right of a straight line through the origin of
the cumplex plane making an angle of #(.) - 90° with
the real positive axis. The capacitance admittances
{juCy) and the resistor admittances /R "1: also lie
above and to the right of this line. Thus no
positive linear combination of these admittances
can vanish as required by eq. (2).

To rule ocut solutions in the open right half
plane, it is shown by a homotopy argument that the
existence of such a solution implies the existence
of a network satisfying the conditions of Thm. 1 and
having natural frequencies of the form s, = j. # 0
(already shown not to exist). Add a parallel
conductance G to each alement of the network, and
call the parallel element pair a “composite
element."” Consider the locus of the natural fre-
quencies as G is increased from zero to arbitrarily
high values. Eventually they must all enter the
open left half plane because all the composite ele-
ments become strictly passive at sufficiently high G
values. Since the network started out with at least
one open right half plane natural frequency, and the
natural frequencies depend continuously on G, then
there exists a G>0 such that the network has natural
frequencies of the form S, = Ju ¥ O (so-o is ruled
out by the strict passivity of all the composite
elements here). It is easily verified that the
collection of composite network elements satisfies
the Thm. 1 conditions. Thus, open right half plane
natural frequencies are ruled out. .

IV. STABILITY RESULT FOR NETWORKS WITH NONLINEAR
RESISTORS AND CAPACITORS

The previous result for linear networks can
afford some limited insight into the behavior of
nonlinear networks. First the nonlinear equations
are linearized about an equilibrium point and
Theorem 1 is applied to the linear model.. 1f the
linearigzed model is stable, then the eqQuilibrium
point of the original nonlinear network is locally
stable, i.e., the network will returr to that

equilibrium point if the initial condition is
sufficiently near it. But the result in this
section, in contrast, applies to the full nonlinear
circuit model and allows one to conclude that in
certain circumstances the network cannot oscillate
even if the initial state is arbitrarily far from
the equilibrium point.

Terminology

We say that a_function yw=f(x) lies in the
sector (a,b] if a.x? < x{fx) < bexZ. And we say
that an impedance Z(s) satisfies the Popov criterion
if (1 + re)2(s, is positive real [7,9,10) for some
r>0. MNote that this statement of the Popov criterion
differs slightly from that given in standard
references [9,10).

Theorea 2

Consider a network consisting of possibly non-
linear resistors and capacitors and cells with

linear output impedances Z,(s), n=1,2,...,N. Suppose

i) the resistor curves are continuous functions
iy = gx(v)) where gy lies in the sector [0,Gp,yl
Gpax>0. for all resistors,

ii) the capacitors are characterized by
ix = Cx(vy) 8y where 0 < C (v))} < Cpay for all k and
v *

kiiix) the impedances Z,(s) all satisfy the Popov
criterion for some common value of r>0. Then
the network is stable in the sense that, for any
initial condition,

4

r

jl I ifw 1 at <= 0z
- all resistors <
and capacitors

Outline of Proof

By Tellegen's theorem, for any set of initial
conditions and any time T>0,

Pl tvele) + o v (eip(e) de «
JO resistors
T

J‘ I v (t) ¢z V(e (e) de +
0 capacitors

T
®
J I vty sr Vi (ENL () at = 0. (@
o Sell
impedances

For resistors .2-11 lying the nstor inequality
V g(v) < GaauV by @ > 0 yields is ig(v) < Ggayiv,
and hence

Cpnn r e ac ;r Lt (0 dt =
0

0

T
j L, () [v, (t) + £ 9 (t))de - ”‘k('k(‘”"k("k“(’;i
0

Ukt

-

3




vhere v

f '
hv) = J gylviiav’ >0 (6)
0

is the resistor co-content.
(6) in (5) yields

Using the inequality

G..,Iik(t)dt-rok(v o< Jf i, (8) v, (£)+r¥, (e))dt,

(&)

!' ca citors, integrating the inequality
1 - c,‘ (vy) & 3 < CpaxCx (Vx)¥¢ yields

I:Ck (vk)vk (t)de =

f:xk(t) v (&) + n?k(:)]dt - lzk(qk('l‘)-ak(qk(on(é)

wvhere
re
- " . ,
E (q) Jov"(q }dq* > 0 9

is the capacitor energy.
in (8) yields

Using the inequality (9)

T
i (B) v, (t)orvk(t))dt

fi2
i2(t)ae-E_(q, (0)<
o k Tk lo (10)

r
cnax
And for the cells, the assumption that (1+rs)2,(s)
is positive real implies that

rT

\ 1. (t) [v {t) +

o™

where E_(0) is the "initial enexrgy in the cell's
output dance” at t=0, a function of the initial
conditions only. Substituting (7), (10 and (l1)
into (4) yields

D
rv (e)ldt > - E (D)), (11)

T
-1 2 -2
Cpax | 1 tde + = i ede <
resistors capacitors
r Jetvmons+ TE(ON+]TE©® , (2
resistors capacitors cells
where the right hand side is a function only of the
initial conditions. Thus (3) holds. .

V. CONCLUDING REMARKS

The design criteria presented here are simple
and practical, though at present their validity is
restricted to linear models of the cells. There
are several areas of further work to be pursued,
one of which is an analysis of the differentiator
cell that includes amplifier clipping effects.
Others include the synthesis of a compensator for
the differentiator cell, an extension of the non-
linear result to include impedance multipliers other
than the Popov operator, and a waveform bounding
analysis of the network whith would guarantee
adequate convergence after an allotted settling
time.
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